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ABSTRACT

Creep-buckling theory of perfect columns is first developed using an
equation of state for the incremental stresses that arise at buckling. The
theory is then developed in a general two-dimensional form for analysis of
plates and shells. It is proved that creep-buckling solutions are directly
analogous to inelastic-buckling solutions provided that the tangent and
secant moduli are treated as strain-rate dependent quantities. Thus, the
creep-buckling results apply directly to any arbitrary compressive creep data
without requiring a specific creep law. The tlwory is correlated with available
test data on columns, flat plates, and shells.

INTRODUCTION

Creep-buckling theories have evolvechelong two main lines that are repre-

sentative extensions of approaches to short-time elastic and inelastic-stability
analyses. The initial imperfection approach to creep buckling postulates that

initial imperfections in geometry or loading grow with time ultimately leading
to failure. The classical stability approach hypothesizes that an exchange of
stable equilibrium configurations from the straight to the bent form occurs at a
critical time at which compressive creep has resulted in reductions in flexural
and extensional rigidities.

For short-time stability, the simplicity and predictive value of classical
stability theory has favored its use over the more detailed calculations required
by the initial imperfection theories. For the latter, not only must the value of

initial imperfection be known or assumed, but the development is further
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experimental data reported herein are gratefully acknowledged.
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encumbered by the necessity of assuming an explicit form of variable stress
creep law. The classical stability approach, on the other hand, has the great
advantage of not requiring specification of the degree of initial imperfection
and further (1oes not require the assumption of an explicit creep law.

A satisfactory classical stability theory for creep buckling of perfect columns
and plates was first developed by Rabotnov and Shesterikov.1 Their analysis of
creep buckling is of major importance because it is based upon fundamental
concepts that logically extend classical stability concepts into the creep regime.
Among the concepts utilized are a mechanical equation of state to represent
the time-dependent behavior at instability and a time-dependent formulation
of the governing differential equations and stability criterion.

In the present paper, certain modifications of the original concepts are intro-
duced and the theory is extended to creep buckling of perfect shells. Of particular
importance is a proof that the derived creep-buckling solutions for arbitrary
creep properties are directly equivalent to inelastic buckling solutions provided
the tangent and secant moduli are strain-rate dependent quantities.

SYMBOLS

a = Plate length
= Plasticity coe fficients

b = Plate width
B = Extensional rigidity, B = Eji/(1-0)
D = Flexural rigidity, I) = E3h3/12 (1-0)
E = Elastic modulus

[Er]; = Strain-rate dependent reduced modulus
E. = Secant modulus

[Es]; = Strain-rate dependent secant modulus
Er = Tangent modulus

[E,]; = Strain-rate dependent tangent modulus

[E.L =
h = Thickness

= Buckling coefficient
L = Colunln length
t = Time

T = Temperature
w = Lateral deflection

= Coordinates
= Shear strain

e = Normal strain
E, = Creep component of strain

= Strain rate
= Creep buckling reduction factor

re = Elastic Poisson's ratio
v = Plastic Poisson's ratio
p = Radius of gyration
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= Normal stress

Gra = Applied creep stress
T = Shear stress

Subscripts

i = Intensity
.r,y,z = Coordinate orientation

• = Time derivative

BASIC CONCEPTS

It is hypothesized that a perfect column, plate or shell acting under in-plane
loads undergoes corresponding deformations before buckling occurs, and there-
fore follows the appropriate constant in-plane stress creep relation. At buckling,
an exchange of equilibrium configurations occurs from the straight to the
laterally deflected form. Hence, a variable stress creep law is required to relate

the incremental stresses and strains associated with lateral bending in the
presence of a relatively large in-plane strain.

The essential difference between creep buckling and inelastic buckling results

from the fact that the  constant  stress state existing prior to creep buckling
produces time-dependent deformations whereas the  increasing  stress state asso-

ciated with inelastic buckling produces time-independent deformations. For
creep buckling, it is only the reduction of the extensional and flexural rigidities
with time under a constant stress that can account for buckling of perfect

structural elements.

CREEP PROPERTIES

Rabotnov and Shesterikovl have assumed that a mechanical equation of

state in terms of the creep components of strain, (E,)i, may be used in the

following form,

(I, [OE (fe) T] = 0 (1)

Equation (1) would seem to be valid for small departures from the initial
in-plane stress state, the conditions which exist in the creep-buckling problem.

It appears, however, that neglect of the elastic strain and strain rate components
may not be justified particularly in the region of primary creep. In fact, many of
the phenomenological creep relations currently in favor are in terms of the total
strain rate, As a consequence, the following equation of state has been
assumed in the analysis presented herein.

T) = 0 (2)

In general form, the stress intensity, ç, the strain intensity, ei and strain rate

intensity, E /, are defined according to the familiar plasticity relations for plane
stress:

= ay2 uxau + 37.2 )1 /2
(3)
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6 [2/ (3)1/21(6,2 + 61/2 + e,tu + 72/4)1/2

[2/ (3)1/2]2 + i,2/4)1 /2




Equation (2) implies that creep data may be transformed into constant strain
rate stress-strain data in terms of oj , i and in the form shown schematically
in Fig. 1 for a constant temperature.

In buckling of plates and shells, the secant modulus is associated with the
extensional rigidity. In Fig. I, the secant, modulus for a prescribed value of
strain rate intensity is defined as

	

[E.,]; = (6)

Thus, for given values of and ii,[E,1; uniquely defines a point on the 4o-surface
of Fig. I.

For an incremental departure from the point on this surface representing
the bent state in the buckling process

	

= (ô adati)be (ao-i/&1)(5i 1 (7)

STRESS INTENSITY

[Es]: 't

TEMPERATURE .const.

STRAIN

RATE


INTENSITY

el

STRAIN INTENSITY
ci

Fig. 1. Stress-strain-strain rate conditions associated with creep buckling.
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The tangent modulus associated with the flexural rigidity is de fined as

	

= Su ,/ (8)


Consequently, by use of Eq. (8), Eq. (7) becomes

E1 = i/af (acr )(Sid& 1) (9)

In a more COD venient form

E 1 = [E 11;+  (Ed, (a/ao (10)

BUCKLING MODELS

While Eqs. (Q) to (10) are important in the creep buckling of columns, plates
and shells, we shall first consider the column in some detail because of its funda-
mental significance. Before proceeding to the formal analysis, however, it seems
worthwhile to review the buckling models that have been accepted for elastic
and inelastic stability of columns. From these basic principles, the creep buckling
mechanism can be shown to evolve logically.

The fundamental perfect column problem is the determination of the effective
bending stiffness after the column has undergone end shortening whether it be
elastic, inelastic or creep. Consequently, it is necessary to examine the stress-
strain path associated with axial deformation as distinct from that associated
with incremental bending. For the simplest case, elastic buckling, the axial
deformation follows path  OA  as shown in Fig. tta; incremental bending follows
AA + on the concave si(le and AA — on the convex side. Thus, the elastic
modulus is associated with the bending stiffness.

The commonly accepted model for inelastic buckling is illustrated in Fig. Qb.
According to the tangent modulus model, axial deformation proceeds along
path 0:1 until buckling occurs. At buckling, incremental bending and axial
loading proceed simutaneously so that the stress state on the convex side remains
stationary at A while the concave side follows path :1:1+ in the (lirection of
the local tangent modulus.

STRESS air
E,

E3> E, > El

	

STRAIN
0

	

a) ELASTIC b) INELASTIC c) CREEP

Fig. 2. Models of buckling behavior.



892 INTERNATIONAL COUNCIL — AERONAUTICAL SCIENCES

The last statement implies an assumption concerning the strain rate of
infinitesimal bending that was first pointed out in Ref. 2. In order for the path

+ to be in the direction of the local tangent modulus, loading on the concave
side must proceed at a strain rate associated with the compressive stress-strain
curve. If this assumption were not implied, but instead instantaneous incre-
mental bending were assumed, then the local bending stiffness would have a
value of  E  and buckling would not occur. Thus, incremental bending at the local
strain rate leads to a lower limit to the bending stiffness which appears to be
the appropriate value to use in determining instability. Since the conditions
at inelastic buckling deviate only slightly from those before buckling, the value
of the tangent modulus is governed by the axial compressive conditions of
o-O Ei and

In creep buckling, a series of stress-strain curves at different strain rates
reflect the time-dependent nature of the problem as shown in Fig. 2e. In the
presence of an applied compressive stress, it was pointed out in Ref. 2 that the
local tangent modulus decreases with time as successive strain-rate curves are
crossed along path AB until buckling occurs. Thus, for creep buckling as for
inelastic buckling the lower bound to the bending stiffness is taken as the tangent
modulus appropriate to the strain-rate conditions at buckling. In this sense, the
creep-buckling mechanism forms a logical extension of that associated with
inelastic buckling.

Shanley has pointed out that even in the presence of a constant axial load,
a-a, the tangent modulus model can be used by assuming that the axial strain
increases slightly at buckling to prevent a strain reversal on the convex side of
the column. Thus, no part of the column unloads and it is not necessary to use
the reduced modulus concept or account for creep recovery effects at buckling.

CREEP BUCKLING OF COLUMNS

Rabotnov and Shesterikovl considered the stability of a column subject to
creep buckling from both a dynamic and quasi-static point of view with the
same result. In the dynamic analysis, the pertinent equations of motion were
derived and the stability of the system was determined from the damping
characteristics of an infinitesimal lateral oscillation. In the quasi-static treat-
ment, a time-dependent equilibrium equation was formulated and the stability
was determined from the character of the lateral deflection following the removal
of an infinitesimal lateral disturbance. The essential feature of the creep-
buckling problem which appears in its simplest form in the quasi-static analysis
of Ref. 1 is used in the following together with the equation of state in terms of
the total strain, Eq. (2) rather than Eq. (I) which was used in Ref. 1.

THEORETICAL DEVELOPMENT

With the assumption that plane sections remain plane, the incremental
bending strain that arises at buckling is given by

dei= — z82w/3x2 (11)
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By use of Eqs. (7) and (10), Eq. (11) becomes

So- = — [E,Pz(82w/ax2) — [E„],z(33w/ 3x23 t)  (12)

Since [Ed, and [Ed, remain constant in the presence of an axial compressive
stress, Eq. (12) can be integrated directly. From equilibrium between the
external bending moment and the internal bending resistance, the following
governing equilibrium differential equation is obtained:

32w [Ed, 33wcf„
3x2 ' LE,], 3x23 t[E j],p2

w —  0(13)

A solution of Eq. (13) can be given in the following form for a simply supported
column:

w = wo[t] sin  (rx/ L)  (14)

By substituting the appropriate derivatives of Eq. (14) into (13),

[ \ 2w [Eui, f \ 2
0"“EE Wo +

[Eb
W0 sin (71-x/L) = 0 (15)

tP-

For a nontrivial solution, the bracketed terms are set equal to zero with the
following result:

1 _L [Ed, Wo
[E th ( irP/L)2[E tb wo

(16)

In order to complete the problem it is now necessary to introduce a stability
criterion associated with the lateral deflectional response wo/wo.

STABILITY CRITERION

The stability investigation of an elastic or inelastic column consists of apply-
ing an infinitesimal lateral disturbance at the critical load to determine if the
bent form vanishes or remains upon removal of the dist urbance. For the creep-
buckling case, the lateral disturbance is time dependent according to Eq. (14)
and therefore Rabotnov and Shesterikov introduced a revised stability criterion.

As indicated schematically in Fig. 3, three paths are possible imnlediately
after the infinitesimal lateral disturbance is removed. Of particular importance
is the local tangent at wo represented by wo. For the stability problem, the
neutral case /4,0 = 0 governs and therefore in Ref. 1, the condition wo/wo = 0
was taken as the stability criterion for creep buckling. Thus, by use of this
stability criterion Eq. (16) reduces to the following quasi-static form:

cro = [Etkirp/142 (17)

It is interesting to note that recently Shesterikov4 apparently rejected this
stability criterion because of ". . . the contradiction which occurs in the quasi-
static study, that with time the initial deformation of the compressed bar may
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(I)

/

CENTRAL

LATERAL w. w.ro

DEFLECTION

W.= (3)
w.

(I) + unstable

0 neutral

— stable

TIME

Fig. 3. Nature of the stability criterion.

decrease.— This implies that in Fig. 3 only paths 1 and 2 are possible. In the

treatment used herein which is in terms of the total strain rather than creep

strain, it is apparent that upon the removal of the infinitesimal lateral disturb-

ance recovery of the elastic strain component can result in path 3. Since only

the local tangent at wo is of interest, all three paths are possible and the apparent

contradiction is removed when the total strains are considered.

RESULTS OF THEORY

From Eq. (17), it is evident that since u„ and  L/p  are prescribed, creep buck-

ling of the column occurs when [Ed; has reduced sufficiently through creep to

satisfy this relationship. The critical time for creep buckling can be obtained

from the following numerical procedure. For illustrative purposes, compressive

creep data on aluminum alloy '20.24-0 at 500°F obtained in the experimental

program of Ref. 5 are used.

Tangents to the compressive creep curves of Fig. 4 represent the instantaneous

values of strain rate. The strain rates for each creep curve may now be plotted

as a function of strain as shown in Fig. 5. The intersections of the curves with

any vertical in Fig. 5 represent the stress and strain data at a constant strain

rate. It is now possible to construct constant strain rate stress-strain curves

for any specified strain rate using these data as shown in Fig. 6.

In order to apply Eq. (17) conveniently, the tangent moduli to the curves

given in Fig. 6 are determined, and plotted against stress as shown in Fig. 7.

A straight line through the origin is associated with a particular  L/p  ratio for

the column. Each intersection of such a line with a constant strain rate tangent

modulus curve represents an unique set of conditions for creep buckling.
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In order to predict creep-buckling times, one fi rst finds the appropriate strain
rate for the applied stress and L/p value from Fig. 7. The creep strain corre-
sponding to the strain rate is then found from Fig. 5 and the creep-buckling time
can be read off from the proper compressive creep curve in Fig. 4. Using this
process, critical times were found for a number of applied stresses and L/p values
and these results are given finally in Fig. 8 as the curve marked  [Eg];.

It is important to note that the ereep-buckling results presented in Fig. 8
represent the critical times at which lateral deflections first develop in a perfect

column. Collapse of the column is of course a later event in the same sense
short-time buckling and failure are distinctly different phenomena.

12
APPLIED STRESS —0".

8500 psi 7587

0000

8000
7165

STRAIN

MICR0IN0VINO1

6000
6744

6320
4000

5600
5480

20
5058

10 20 30 40 50 60
TIME —MINUTES

Fig. 4. Average compressive creep data for 2024-0 aluminum alloy at 500° F.
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Fig. 5. Strain-strain rate data for 2024-0 aluminum alloy at 500° F.
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Fig. 6. Constant strain rate stress-strain data for 2024-0 aluminum alloy at 500° F.
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Fig. 7. Tangent modulus-stress data at constant strain rates for aluminum alloy 2024-0
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COLUMN EXPERIMENTS

Also shown in Fig. 8 are the results of carefully conducted creep-buckling
tests on pin-ended aluminum alloy 2024-0 columns of  L/p =  40 at 500°F. These
results, taken from Ref. 5, are for columns that contained effective initial
imperfections less than 0.005 of the thickness. The initial imperfections were
deduced from Southwell analyses of the central deflection measured during the
controlled application of the creep load at 500°F. The compressive creep data
shown in Fig. 4 are representative of the column material.

For the test data shown in Fig. 8, the solid circles represent the times for
failure of the columns whereas the open circles represent the times at which the
central deflection-thickness ratio reached 0.05. This criterion, which is somewhat
arbitrary, was used as a measure of the development of significant lateral
deflections and is based upon the behavior of short-time column tests (shown at
a time of 0.1 min. in Fig. 8). From the short-time tests, it was found that an
average value of  w/t = 0.05 corresponded to the tangent modulus column stress.

This distinction between buckling at which significant lateral deflections
develop and failure is of particular importance in creep buckling, since creep is
essentially a time-dependent phenomenon. In a short-time test, on the other
hand, buckling and failure are essentially coincident in terms of the stress
variable.

In Fig. 9, end shortening and central deflection data obtained during the
course of three column creep tests at a stress level of 6,320 psi are shown. Also
indicated is the theoretical critical time based on the strain rate tangent modulus
at approximately one minute. It can be observed that in the neighborhood of
one minute, the  w/t  values shown in the upper portion of Fig. 9 are close to 0.05
for two of the tests and that the corresponding end shortening data are curving
upward.

These are significant indications that creep buckling has occurred in the
neighborhood of the theoretical prediction for two of the three column tests.

10


8

0 • • •

•
6

o
[Edi

STRESS
ksi 4

2

o BUCKLING TIME %.47t.
FAILURE TIMEwit > 0.30

0
0 I 05 1.0 50 10 50 100

TI M E - MINUTES

Fig. B. Correlation of creep buckling theory and experimental data on aluminum alloy

2024-0 pin ended columns of  Llp = 40  at 500° F.



898 INTERNATIONAL COUNCIL — AERONAUTICAL SCIENCES

12000

01

1 8oe°
END SHORTENING wn I I

MIGRO-INGH/INGH
i TINE

6000 0 3

4000 4
,

2030

2 3 4 5 6 7 8 9 10

TIME - MINUTES

4-,

1

raAE

t EE'I‘

12 13 14

Fig. D. End shortening and lateral deflection data for three 20i4-0 aluminum alloy pin

ended columns tested at a stress level of 6340 psi and 500° F.

Since the tangent modulus theory predicts the time at which significant lateral
deflections can first develop for columns containing small imperfections, it does
not seem particularly unusual that the third column shown in Fig. 9 reached
w/t = 0.05 at a considerably greater time than the other two. In essence, the
strain-rate dependent tangent modulus theory provides a lower bound for the
development of significant lateral deflections. After buckling (at w/t =  0.05),

considerable time can elapse before failure occurs at a w/t in the neighborhood
of 0.30, as indicated in Fig. 9, as a distinctly different event.

Failure for a short-time test of an inelastic column occurs when strain reversal
is complete over the convex side of the column.6 Consequently, in order to have
some theoretical estimate of the failure time of columns for the creep case, the
reduced modulus associated with strain reversal [Er]; was calculated using the
strain-rate dependent tangent modulus [E,L. The reduced modulus values were
then used in Eq. (17) in place of [EA. These results are shown in Figs. 8 and 9
as the curve marked [Er ] . It can be observed that the test data for buckling
and failure are indeed bounded by the [E ] ; and [Er]; curves.

CREEP BUCKLING OF PLATES AND CYLINDRICAL SHELLS

Having considered the fundamental problem of creep buckling of a column
from both a theoretical and experimental viewpoint, it is pertinent now to
consider creep buckling of plates and cylindrical shells. As is evident from the
column problem, buckling develops at an appropriate local strain rate and at
this instant the equilibrium conditions of the stability problem are satisfied.

An appropriate equilibrium equation is that for inelastic buckling of plates
and shells where the secant and tangent moduli are strain-rate dependent
quantities defined according to Eqs. (6) and (10). The following governing
equation for inelastic buckling of an isotropic shell is based on deformation
theory and was derived in Ref. 7 under the mild restriction that an external
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torsional load does not act in combination with axial compression or lateral
pressure.

a4[ Aa4 . (4itiA2 ,IL22 

ii 1 -1-  A — 4— Al2) 	 34 + A 2 — 1

aX4 il3 ..73 aX 22 ay4

 9 4(Al2 + A 3)

a w

+ A2

a4w

1-

a w a,h 32w  9 Th a2w a h 321
[Ai ax4 ± 3X2ay2 ay4 D 0x2 D axay

+ L1ay2

A122) 04wB  A A

	

4  3x4
— 0 (18)

R2 2

A1 = 1 — aur2/4 a = (3/a ,2) (1 —  EdEs)

A 2 = 1 — acry2/4 B = 4E sh/3

Al2 = 1 — ctaxay/2 D = E /9

A 3 = 1 —  ar2

CREEP BUCKLING OF PLATES UNDER COMPRESSION

Without any loss of generality, we can consider the case of a flat plate under

an axial compressive stress, a a. In this case, = T = 0, A2 = A l 2 = A3 = I and

	

A1 = 1/4 +  (3/4)E1/E3  (19)


Thus, Eq. (18) reduces to the following with  R = oo :

(1 ± 3  Et) 84w + 2  a
4w a4w  ad ,  a2w

	 = 0 (20)
4 E, ax4 ax2ay2 ay4 D ax2

By substituting the value for Et given by Eq. (10) into Eq. (20), and replacing
E,  by [E,] we obtain:

(1  3 [E 11) 34 w 3 [Ed s a5W  3 4w 3 4w 3 2w

	

+ 2   — 0 (21)
4 4 [Ed, ax4  4 [E sh 3x43t 0x23y2 3y4 D 3x2

A solution of Eq. (21) can be given in the following form for a simply supported
flat plate:

w = wo[1]sin inirx sin 71-2
a

(22)

By substituting the appropriate derivatives of Eq. (22) into Eq. (21)

3 [E.]. ( mr)4 I'D +  2 (7)2
( 56)2 Wo

1 3 [E t]; mr
R4 m 4 [E,[s)( a ) + 4 [E.]E\ a / °

2

	

7r adt (mir
— — wo]sin mirx sin 7-ly = 0 (23)

)4 IV° D a a

where:
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For a nontrivial solution, the bracketed terms are set equal to zero with the
following result:

D F(1 + 3 [Edi)(mir)2 + 2 ( 76 )2 + Cary ( y
h \4 4 [EV\ a /

3  [Es], (nor)2

+

4 [E,], a wo

For creep buckling, the Rabotnov-Shesterikov stability criterion, wo/wo= 0
is applied to Eq. (24). As a consequence, the last term vanishes and Eq. (24)
reduces to the creep-buckling analog of the inelastic buckling solution.

r2knE  (hy
12(1—v,2) b

where

(1—v,2)[E ];[+ + 3
1 1

(
tE19112

1 , 

( 1—p2) E 2 4 [Ea],

CREEP BUCKLING OF PLATES AND SHELLS

We can consider now certain aspects of the general creep-buckling problem
that become apparent from the analysis of the flat plate under axial compression.
The essential result of applying the Rabotnov-Shesterikov stability criterion,
wo/wo = 0, is that the time-dependent term in the definition of the tangent
modulus vanishes so that Eq. (10) reduces to

Et = [Et]; = t/Sf (27)

As a consequence, the creep-buckling problem becomes quasi-static as pointed
out in Ref. I.

As defined by Eq. (6), the secant modulus is

[E,1; = ut/fi (28)

Therefore, the strain-rate dependent tangent and secant moduli for a fixed stress

in the creep-buckling problem are directly analogous to the tangent and secant

moduli associated with the increasing stress in the inelastic buckling problem.

As a consequence, the plasticity reduction factors obtained for inelastic
buckling of flat plates and shells under various types of loadings may be used
directly in the creep-buckling problem with the understanding that the tangent
and secant moduli are strain-rate dependent for the latter. Thus, the inelastic
buckling results obtained in Ref. 8 for flat plates, in Ref. 9 for shells and in Ref. 6
for orthotropic plates and cylindrical shells may be employed for creep buckling
of materials with arbitrary creep characteristics by following a graphical proce-
dure similar to that presented for columns.

(24)
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EXPERIMENTS ON PLATES AND SHELLS

The creep-buckling theory presented herein predicts the time at which

significant lateral deflections first develop. Under short-time loading it is well
known that the failure of plates and many classes of shells occurs as a distinctly
later event than buckling. Thus, the separation in time between creep buckling

and creep collapse can be expected to be even more pronounced for plates and
many classes of shells than for the column case discussed previously.

As a consequence, it is important to evaluate the predictions of creep-buckling
theory by conducting carefully controlled tests on plates and shells in a matmer

similar to that used for the column tests (Fig. 9). In such tests, it is necessary

to measure both lateral deflection and end shortening as a function of time and
to obtain independently the pertinent compressive creep properties of the
material used. The lateral deflection measurements indicate when significant
lateral deflections develop and when failure occurs. By comparing the end
shortening and compressive creep data, the presence of unsuspected frictional

effects during the creep test which may be contributed by the plate supporting
jig, for example, can be detected.

At the time of preparation of this paper, t he few published data available on

plates and shells did not satisfy these criteria. Consequently, it is not possible
to evaluate the creep-buckling theory in a critical manner. Such tests are in
progress as part of our current program and it is hoped that they can confront
the theory with satisfactory test data. (See Ref. 10)
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